基于文本的人检索的核心问题是如何弥合多模式数据之间的异质差距。以前的许多方法,用于学习以\ textbf {交叉模式分布共识预测(CDCP)}方式学习潜在的常见歧管映射范式。当将某个模态分布到公共歧管中的映射特征时,相反模态的特征分布是完全不可见的。也就是说,如何实现跨模式分布共识,以便将多模式特征嵌入和对齐构建的跨模式公共歧管中,这完全取决于模型本身的经验,而不是实际情况。通过这种方法,不可避免的是,多模式数据在共同的歧管中不能很好地对齐,这最终导致了次优的检索性能。为了克服此\ textbf {CDCP困境},我们提出了一种称为lbul的新颖算法,以学习基于文本的人检索的一致的跨模式公共歧管(C $^{3} $ M)。正如中文的谚语所说,我们方法的核心思想是``\ textit {san si er hou xing}',即\ textbf {thee thee thee thee thee you lap leak(lbul)}。 LBUL的常见歧管映射机制包含一个看起来的步骤和跳跃步骤。与基于CDCP的方法相比,LBUL考虑了视觉和文本方式的分布特征,然后将数据从某种模式嵌入到C $^{3} $ M中以获得更固体的交叉模式分布共识,从而获得了优质检索准确性。我们对两个基于文本的人检索数据集Cuhk-Pedes和RSTPREID评估了建议的方法。实验结果表明,所提出的LBUL胜过先前的方法,并实现了最新的性能。
translated by 谷歌翻译
给定自然语言描述,基于文本的人检索旨在从大规模人物图像数据库中识别目标人的图像。现有方法通常面对\ textbf {颜色过度盟军问题},这意味着在匹配跨模式数据时,模型在很大程度上依赖颜色信息。实际上,颜色信息是检索的重要决策,但是对颜色的过度依赖会分散模型从其他关键线索(例如纹理信息,结构信息等)中分散注意力,从而导致了次优的检索表现。为了解决这个问题,在本文中,我们建议\ textbf {c} apture \ textbf {a} ll-round \ textbf {i} nformation \ textbf {b} eyond \ textbf {c} olor(c} olor( )通过用于基于文本的人检索的共同优化的多分支体系结构。 CAIBC包含三个分支,包括RGB分支,灰度(GRS)分支和颜色(CLR)分支。此外,为了以平衡和有效的方式充分使用全方位信息,采用了相互学习机制来启用三个分支,这些分支可以参与信息的各个方面,以相互交流和学习。进行了广泛的实验分析,以评估我们在\ textbf {有监督}和\ textbf {弱监督}基于文本的人检索的\ textbf {pertexbf {pertegbf {pertegbf {cuhk-pedes和rstpreid数据集上的提议的CAIBC方法,这表明CAIBC显着超过现有的方法和现有方法。在这三个任务上实现最先进的性能。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
To generate high quality rendering images for real time applications, it is often to trace only a few samples-per-pixel (spp) at a lower resolution and then supersample to the high resolution. Based on the observation that the rendered pixels at a low resolution are typically highly aliased, we present a novel method for neural supersampling based on ray tracing 1/4-spp samples at the high resolution. Our key insight is that the ray-traced samples at the target resolution are accurate and reliable, which makes the supersampling an interpolation problem. We present a mask-reinforced neural network to reconstruct and interpolate high-quality image sequences. First, a novel temporal accumulation network is introduced to compute the correlation between current and previous features to significantly improve their temporal stability. Then a reconstruct network based on a multi-scale U-Net with skip connections is adopted for reconstruction and generation of the desired high-resolution image. Experimental results and comparisons have shown that our proposed method can generate higher quality results of supersampling, without increasing the total number of ray-tracing samples, over current state-of-the-art methods.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Representing and synthesizing novel views in real-world dynamic scenes from casual monocular videos is a long-standing problem. Existing solutions typically approach dynamic scenes by applying geometry techniques or utilizing temporal information between several adjacent frames without considering the underlying background distribution in the entire scene or the transmittance over the ray dimension, limiting their performance on static and occlusion areas. Our approach $\textbf{D}$istribution-$\textbf{D}$riven neural radiance fields offers high-quality view synthesis and a 3D solution to $\textbf{D}$etach the background from the entire $\textbf{D}$ynamic scene, which is called $\text{D}^4$NeRF. Specifically, it employs a neural representation to capture the scene distribution in the static background and a 6D-input NeRF to represent dynamic objects, respectively. Each ray sample is given an additional occlusion weight to indicate the transmittance lying in the static and dynamic components. We evaluate $\text{D}^4$NeRF on public dynamic scenes and our urban driving scenes acquired from an autonomous-driving dataset. Extensive experiments demonstrate that our approach outperforms previous methods in rendering texture details and motion areas while also producing a clean static background. Our code will be released at https://github.com/Luciferbobo/D4NeRF.
translated by 谷歌翻译
Deploying reliable deep learning techniques in interdisciplinary applications needs learned models to output accurate and ({even more importantly}) explainable predictions. Existing approaches typically explicate network outputs in a post-hoc fashion, under an implicit assumption that faithful explanations come from accurate predictions/classifications. We have an opposite claim that explanations boost (or even determine) classification. That is, end-to-end learning of explanation factors to augment discriminative representation extraction could be a more intuitive strategy to inversely assure fine-grained explainability, e.g., in those neuroimaging and neuroscience studies with high-dimensional data containing noisy, redundant, and task-irrelevant information. In this paper, we propose such an explainable geometric deep network dubbed as NeuroExplainer, with applications to uncover altered infant cortical development patterns associated with preterm birth. Given fundamental cortical attributes as network input, our NeuroExplainer adopts a hierarchical attention-decoding framework to learn fine-grained attentions and respective discriminative representations to accurately recognize preterm infants from term-born infants at term-equivalent age. NeuroExplainer learns the hierarchical attention-decoding modules under subject-level weak supervision coupled with targeted regularizers deduced from domain knowledge regarding brain development. These prior-guided constraints implicitly maximizes the explainability metrics (i.e., fidelity, sparsity, and stability) in network training, driving the learned network to output detailed explanations and accurate classifications. Experimental results on the public dHCP benchmark suggest that NeuroExplainer led to quantitatively reliable explanation results that are qualitatively consistent with representative neuroimaging studies.
translated by 谷歌翻译
Domain adaptation methods reduce domain shift typically by learning domain-invariant features. Most existing methods are built on distribution matching, e.g., adversarial domain adaptation, which tends to corrupt feature discriminability. In this paper, we propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure. It's motivated by the observation that as the model is trained to be progressively discriminative, features of different categories expand outwards in different directions, forming a radial structure. We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously. Specifically, we represent each domain with a global anchor and each category a local anchor to form a radial structure and reduce domain shift via structure matching. It consists of two parts, namely isometric transformation to align the structure globally and local refinement to match each category. To enhance the discriminability of the structure, we further encourage samples to cluster close to the corresponding local anchors based on optimal-transport assignment. Extensively experimenting on multiple benchmarks, our method is shown to consistently outperforms state-of-the-art approaches on varied tasks, including the typical unsupervised domain adaptation, multi-source domain adaptation, domain-agnostic learning, and domain generalization.
translated by 谷歌翻译
The ''Propose-Test-Release'' (PTR) framework is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is nice. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from ''Private Aggregation of Teacher Ensembles (PATE)'' -- privately releasing the entire model with a delicate data-dependent analysis.
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
translated by 谷歌翻译